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ABSTRACT 

This report deals with theoretical investigations in the area 
of linear atmospheric propagation phenomena and raicroturbulence 
statistics.    It specifically deals with the examination of proper 
averaging times required for propagation experiments and with theo- 
retical backup for phase structure function measurements.    Finally, 
a bibliography on optical propagation which was prepared earlier 
has been updated. 
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INTERIM TECHNICAL REPORT 

INTRODUCTION 

This is the first interim report under Contract No. F 30602-71-0132 
entitled "Investigation of Laser Propagation Phenomena."   This effort 
is aimed at providing theoretical support to the RADC Laser Propagation 
Program.   The report covers the period January li 1971 to July 1, 1971. 

The theoretical support is in the area of linear atmospheric 
propagation phenomena and microturbulence statistics.   Other areas Include 
theoretical support to the performance of propagation experiments and 
in the interpretation and processing of the data to ensure proper match 
between theory and experiment. 

During the past six months effort has been concentrated in two 
areas;   examination of proper averaging times required for propagation 
experiments and theoretical backup for phase structure function measure- 
ments.   A bibliography on optical propagation prepared previously was 
also updated.   The work on averaging times is in direct support to 
the experimental program at RADC because It is Intended to supply 
information to be used in the data taking procedure.   Some suggestions 
have already been Incorporated into the data-taking procedure.   The 
phase structure function work consists of the calculation of curves of 
interest in experiment design and interpretation.   Specifically the 
curves predict the contribution of various portions of the path to the 
final measured value of the phase structure function for a spherical 
wave and for horizontal and slant paths in the turbulent boundary layer. 
These will be useful in interpretation of results and in future design 
of experiments.   The bibliography is an extension of a previous work. 

These items will now be considered In detail starting with the 
work on averaging times! 

■ 

AVERAGING TIMES 

In any type of measurement involving random quantities, the 
quantities of Interest must be average values because it is only the 
average values which have any chance of being reproducible and predictable. 
Such quantities as means, variances and covariances, which are of Interest 
in one application or another are all examples.   However, in order for 
these quantities to be reproducible, and therefore meaningful, the 
averages must be taken over a representative set of values, a set large 
enough to Include all the values to be encountered in the proper pro- 
portion.    It Is to answer the question of how much data to take in 
order to provide such a set of values that this study has been under- 
taken.   This study is by no means complete.   The chief result to date 
has been an examination of the literature to determine the various 
approaches used there.   Results of this examination will be presented 
here. 



There are several  criteria   for determining what a proper 
averaging time might be.   They are based on precision desired and on 
the duplication of conditions required by assumptions in theoretical 
developments.   For example, in theories of light beam propagation in 
random media the assumption of homogeneity and isotropy are almost always 
invoked.    Further one may well use the central limit theorem to simplify 
predictions involving not too long propagation paths.    In taking the 
data one generally uses the ergodic theorem and measures time averages 
rather than ensemble averages.    Finally the upper and lower spectral 
limits of the desired data must be considered.   All of these points 
depend on the averaging time for satisfactory physical implementation. 
In this section we present a review of the various approaches in the 
literature to quescions involving averaging times, indicating assump- 
tions and making a few limited observations.   Much of the work described 
comes from the micrometeorological literature, the rest stemming from 
conmunication sources.   The various authors consider various aspects 
of averaging times, based on the criterion selected, Ergodic principle, 
etc.; and on the type of data, analog vs sampled data, time signals or 
power spectra, etc.   These approaches will now he reviewed. 

In the first approach (Lumley and Panofsky, 1964; Davenport 
and Root, 1950; Bendat and Piersol, 1966}   to questions of averaging 
times the question posed is how long must a time average be in order 
for it to represent an ensemble average.   The discussion considers a 
random stationary analog signal, call it f(t).    f(t) could be a direct 
signal or some function of a signal.   The object is to relate the time 
average. 

1 (i)  mr-f f^+f) dt' 

and the ensemble average <f(t)>.    Ensemble averages are denoted by 
angular brackets.   The measure of the difference between the two is taken 
to be the ensemble average square difference, a^{t) between the two. 

1 
1 
I 
I 
I 
I 
I 
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(2)     a2(t) = <[i fit+v) dv - <f(t)>r> 

a (t) is the ensenble variance of the tine average. 

An expression for an appropriate averaging time is worked out 
in terms of B{t')t the ensemble covariance of f(t), where 

(3)     Bit') = <Cf(t+f) - <f(t)>] Cf(t) - <f(t)>]> 

j 



and the autocorrelation p(t) « B(t)/B{0). The basic expression is 
derived by first expressing Eq. (2) first as a double integral and 
then by putting it in terms of the autocorrelation to give 

(4a)   a2 = c1 

7 ifit+V) - <f(t)>] [f(t+t") - <f(t)>] dt' dt"> 
o o 

T 
(4b) ■TU 

O 0 

p^'-t") dt' dt" 

The basic expression is simplified by transformation to sum and dif- 
ference coordinates with the subsequent performance of one of the integrals. 

(5)  t, - ^ . t2 = ^ 

(6a) a2 = ^p-  I d^ p^^ 
['HU 

dt- 

HU 

T    t 

(6b)   .1|(0I | (1 .^p^)^ 

Equation (6b) can be further simplified if it is the case that the 
autocorrelation p(ti) drops to zero in a time much less than T.    In 
that case the second term in the parenthesis inside the integral in 
Eq. (6b) is negligible.   The result expressed in terms of I, the 
integral scale of the autocorrelation. 

(7)     I^pft^d^ 
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Equation (8) is put In a more useful form by expressing o as a 
fraction, e, of the ensemble mean, e ■ o/<f>t giving 

(9),   T = LBiOl   I 
<f>       e 

Equation (9) U the basic result.    It Is used to give averaging times 
formulas for several random quantities (Bendat and Plersol, 1966). 

i  There are several points worth Indicating about this result.   The 
first is that it expresses an averaging time for f(t) In terms of the 
ensemble averages B(0), <f(t}> and an Integral of an ensemble average! 
Thus, in order to estimate the averaging time .required for time average 
to duplicate the ensemble average, it Is necessary to already know > 
some of these ensemble averages.   To circumvent this problem, one might 
attempt a trial run, assume that the time averaged variance, mean, and 
Integral scales are approximately realistic and estimate the averaging 
time.    If the estimated value turns out to be what has already been 
used, then the measurements are at least consistent within the given 
framework. i 

A second point Is Indeed more significant:   Eq. (9) says that for 
very long averaging times, the time and ensemble averages bfecome 
identical!   Thus, in situations where it is impossible or prohibitive 
to set up an ensemble of representative situations, then a time average 
can in principle be made to suffice.   It was assumed that f(t) was 
stationary, so that there are not any long term trends to worry about! 

The final point concerns an interpretation of Eq. (9).   One might 
regard a long time average as a sort of ensemble average if the time 
record could be partitioned Into successive segnients each uncorrelated. 
Then each segment could be regarded as an independent ensemble member 
and the time and ensemble averages would be comparable.    In that sense 
the Integral scale of the autocorrelation gives a time propprtional to 
a decorrelation time.   The quantity .   , 
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might be a Tittle tnore representative of a decorrelation time.   Then 
the decorrelation time divided by the square of the desired precision 
gives the requisite averaging time. 

Alternatively, (Bendat and Piersol, 1966} one can state the same 
concept in different terms by defining the equivalent bandwidth, W, 
where 

W = 1/41. 

Then the time-bandwidth product, WT is defined as the number of degrees 
of freedom and identified with the number of independent ensemble 
HBmbers.   Thus the fractional deviation from ensemble average, e, is 
Inversely proportional to the time-bandwidth product, as might be in- 
tuitively expected., 

If one assumes a gaussian distribution of data, the equation 

can be further reduced.    If the quantity to be measured is the mean square 
value of u, a gaussian random variable, then B(0) ■ <(u2-<u2>)2> = 
2<u2>2i <f>2 s <u2>2t and 

e 

(Lumley and Panofsky, 1964).   This equation, which assumes a Gaussian 
distribution, was applied to some microthermal data taken on March 23, 
1971 at the Rome Air Development Center.    Figure 1 shows the auto- 
Correlation vs delay time for a single temperature sensor.   The auto- 
correlation does approach a zero value so we assume that the Integral 
scale does exist and trends in data are unobservable.   From this graph 
we find that I = 0.1 sec. and 

TB (4)(.l sec) 
e2 

for  e ■ 10%        T = 40 sec 
e =   5% T = ,160 sees 

T = 4C 
T =,16 

c = 2«        T = 1000 sees 
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Fig. 1.    Autocorrelation versus delay time of 
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A second approach (Chamock and Robinson, 1957) to the question 
of averaging times considers sampled data, again asking how long a 
data-taking duration is required.    This method considers a random 
function of time sampled N times over a long interval T   from which are 
calculated the mean 

7= ir T     N 

N 

and variance 

BN(0)=i     I 
i=l 

(^ - f)2 

The subscript N denotes explicitely the number of data samples used. 
The N data samples are divided into sections of s samples each and the 
question asked is how large must s be in order for the section variances, 
averaged over the sections, to approximate the complete variance BN(0). 

The approach is to consider the variances of the individual 
sections.   The quantity used for comparison Is B (0), the section 
variances averaged over all the sections 

(12)   Bs(0) = 1 
m 

m-1 

.1 
as+s 

i»as+l 

,   as+s 

1     s   as+l V 
In Eq. (12) there are m sections of s=N/m samples.   The sub- 

script "a" indexes the individual sections.    If the whole trace Is con- 
sidered as just one section then s s N, m s 1 and a s 0.    In that case 
BM(0) IS merely the complete sample variance Indicated In Eq. (11). 
If there Is only one sample In each section, then 

as+s 
s = 1, m = N and   I 

as+l V a+1 

so that each term in the parenthesis In Eq. (12) is identically zero. 
Thus ^(0) = 0. 

The question posed is what Is the shape of the Bc(0) curve as 
a function of s?   The behavior one would like to see is to have the mean 
of the section variances, I (0), approach BN(0) for s « N.   Then the 



total number of samples, N, and the averaging time, T,», is well above 
that required in practice.   The minimum number of samples would be that 
for which F(0) initially comes within some preset region near FN(0). 
For this situation the Bs(0) vs s curve would be similar to that of 
Fig. 2a.    If the total number of samples is too small then the Fs(0) 
curve might have a shape more nearly like that of Fig. 2b.   Thus It is 

BN(o) 

Bt(o) 

(a) 

(b) 

Fig. 2.    Variance versus averaging time. 
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2 the shape of the Fs(0) curve that determines the appropriateness of 

the averaging time.   The values of N and s must be sufficiently large 
with s « N to give the proper shape.   In a sense this is also a self- 
consistency method ari described because there is no a priori way 
stated for determining optimum values of s or T. 

Continuing with this approach (Chamok and Robinson, 1957; 
Pasquill, 1962; Kahn, 1957 and Smith, 1962) the main points are 
made after Eq. (12) is simplified.   To do this, add and subtract the 
long term average, Tt inside the parenthesis in Eq. (12), multiply out 
the square and simplify. 

, m-1 , as+s i as+s ~ 
(13a)TJs(0)=i  I   1  I     if^f-l I     (f.-f))2 

s
 "' a=0 s as+1     1        s as+1     1 

, m-1 , as+s « , as+s , as+s « 
(i3b)       =i I r I   Ufrrf-WrVT 1 ifr?) + (T I (vf))2] m a=0 s as+1       1 1      s as+1   1 s as+1   1 

, m-1   i as+s «      T as+s , 

m a=0   s as+1     1 s as+1     1 

Equation (13c) was the starting point for Chamok and Robinson. 
In the first term in Eq. (13b) the double summation is merely the 
complete sum over all samples so this term is merely BN(0).   Thus Eq. (12) 
reduces to 

, m-1    , as+s - 
(14)   Is(0) = B (0) - i  |    (i   I     (f -f))2 

s n m a=0   s as+1     1 

The second term in Eq. (14) contains the difference between the section 
means and the long term mean and indeed should go to zero if the 
sections become sufficiently long, leaving BN(0) as desired. 

The second term in Eq. (14) can be further simplified by writing 
It in terms of the covariance B0(k), where 

,        m-1   as+s-k 

. 



Thus multiplying out the terms in the double summation in the second 
term in Eq. (14; and regrouping using Eq. (15) gives 

(16a)   Bs(0) - BN(0) =]-[|-Bo(l-s)+|Bo(2-s)+...+ |.Bo(0)+...+ iBo(s-l)] 

(16b) 1 (s-1) 

s   k--(s-l) 
M: 

s > Bo(k^ 

If s and N are sufficiently large, then the summation in Eq. (16b) 
can be approximated by an integral 

(17a)    Bs(0) - BN(0) ii   j   (1 -M.) B(k) dk 

(17b) 2B(0) 
s |(i-M)f^* 

assuming B(k) is a symmetric function.   The right hand side of Eq. 
(17b) then has a form identical with Eq. (6b) if we put 

(17c)   -fj-  = ^       and      -§-  = T. 

T   is as before time required for all N samples.   The result is 

2 BN(0)   I t,    BCt,) 
(17d)   BT(0) = BN(0) - ~|~  j (i . -L)       1     d^ 

o 

Equation (17d) can be derived in a slightly different fashion, 
and a more complete comparison between the approaches of Lumley and 
Panofsky presented first and of Chamok and Robinson can be presented 
by interpreting the sums in Chamok and Robinson's approach in a 
particular way and by assuming a continuous rather than a sampled 

10 
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trace.   Thus consider the trace of duration T0 to be divided up into 
sections each of duration T.    Then identify the m intervals with 
members of an ensemble.   One then computes the time average and the 
time variance, i.e. the time average square deviation, about the time 
average for each ensemble menfcer.   The question asked then is how 
does this ensemble average of the time variances depend on averaging 
time, T, e.g., how long must T be in order for the ensemble average 
time variance to approach the ensemble variance. 

With the interpretations of the sums in mind we can rewrite 
Eq. (12) by replacing the sum over "a" by an ensemble average and 
replacing the sum over "i" by a time average.   Equation (12) becomes 

(18a)   8T(0) = <^ 1 ( , t'f(t) - f f(t) dtr dt> 

and Eq. (14) similarly becomes 

(18b)   BT(0) = B(0) - <[} f(t) dtr 

The second term on the right hand side of Eq. (18b) is identical to 
the exp.asslon In Eq. (4a) and can be similarly simplified giving 

(18c)   ^(0) = 8(0) - ^1  I (1 - Y1) pC.t,) d^ 

which is the same as Eq. (17d), if we identify BM(0) with the ensemble 
variance.   This reinforces the concept of individual time samples 
being independent and being regarded as individual ensemble members. 

It is interesting to note here that the same integral is used 
In two different situations.    In Eq. (6b) it gives the mean square 
ensemble average difference between time and ensemble averages, denot- 
ing the approach of these two averages with increased averaging time. 
In Eq. (18c) it gives the ensemble average of the time variance, again 
denoting the approach of the two with increasing averaging time. 

There is one other result of Charnok and Robinson; a procedure 
for processing the function Bs(0) in Eq. (17b) and Fig. 2 to give 
directly the covariance B(s).   This expression is 

11 
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2 
(19a)    B(s) = B(0) -i ^   (s2BjO)) 

3S 5 

2 
This result is obtained by differentiating s 3.(0) with be(0) taken from 
Eq. (17a) to give s s 

D 
D 
i 

(19b)   ||(S2BS(0)) = 2sBN(0) - | B(k) dk ^ 

-s U 
a2 2 

(19c)   -^<sZBs(0)) = 2BN(0) - 2B(s) 

Using the fact that 0 

(20)     BN(0) = i  |   (f.-f)2 = B(0) U 

and rearranging gives Eq. (19a).   Thus, from averaging times it is li 
possible to pull out data on other than just averaging times. 

It is also possible to express the approach of the averaginq 
time to its proper value as given in Eqs. (16b) and (17a) using a 
spectral description, (Chamock and Robinson, 1957; Ogura, 1957; 
Pasquill, 1962 and Smith. 1962).   Thus, for example, introduce the 
Dower snectrum Sd*) aiuen bv ü power spectrum SU) given by 

00 

(21)     B(^) = B(t) =   |s(u)e
jwt 

mm 

into Eq. (17a) 

D 
H 
0 

00 

(22)     Bs(0) = BN(0) - 11   dt (1 - -f-)     | 8(«) ejut <h | 
-X -00 • 

Performing the integration and using Eqs. (20 and (21) gives | 

.2/1 

(23)      Bs(0) =    JsU) (l - S "   ^       da. I 
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Equation (23) indicates the well-known fact that a finite averaging 
time acts like a frequency filter. The filter function in this case is 
{1 - Cs1n(^T)/('ä(üT)j2} which acts like a high-pass filter, passing fre- 
quencies higher than f0 = 1/T. Thus the period of recording should be 
sufficiently long to faithfully reproduce the lowest frequencies desired. 

To summarize the results so far, it appears that an acceptable 
averaging time for approach of time average and variance to the 
corresponding ensemble averages might be deduced by plotting a set of 
data in a manner indicated in Fig. 2a and adjusting the total amount of 
data and length of sections until a curve similar to Fig. 2a is obtained. 
The time average will then be a good representation to the ensemble 
average. One should then check that the section durations are suf- 
ficiently long that the lowest frequencies desired are reproduced. 
Finally it is possible to obtain the covariance from the curve in 
Fig. 2a. 

A third approach to averaging time considers measurement of power 
spectra (Packman and Tukey, 1958) of random stationary analog data, 
normally distributed. Several steps of data processing are used. 
First the data are processed to give the covariance which is then 
multiplied by a bell shaped curve which forces the product to stay at 
zero after some lag time Tm after which the covariance has become very 
small. The product Is then transformed to give the power spectrum and 
the power spectrum is then averaged over an ensemble of situations. The 
question posed is again, how long must the original data trace be in 
order for the power spectral value to be within a predetermined range, in 
dB, say ninety percent of the time. 

The averaging time question is answered quite simply for power 
spectra because they follow chi-square statistics. For such a case 
the confidence limits are used to determine the number of degrees of 
freedom, k, which are in turn related to the power spectral mean and 
variance as shown in Eq. (25). 

(25)    k =  2<PH>2 5-- 
(<P(«) - <P(a.)>)Z 

These spectral averages are in turn related to the averaging time T and 
the cutoff time Tm to give the desired results. The basic steps in the 
derivation of this method will be outlined. The reader is referred to 
the original source (Blackman and Tukey, 1958) for a more detailed 
discussion. 

To continue with the derivation outline, then, start with the time 
trace X(t) of a single ensemble member. For that case the covariance 
is given by (neglecting end of trace effects) 

13 



(26) B(T) 

T/2 
1    f 

-T/2 

X(t-j) X(t-^-) dt 

For this same tine trace, the power spectral density would then be 

(27a)   PU) 

(27b) 1 
T 

B(T) D(T) COS       d 

172 

dx D(T) COS (DT X(t-J-) X(t+^) dt   . 
•T/2 

D(T) IS a bell shaped function with the restrictions 

D(T) = 1 T = 0 
D(T) = 0        x >,^m 

where T,,, Is the value of t at which the covarlance becomes negleglbly 
small.   D(T) eliminate.«- noise arising from fluctuations for T > Tm. 
The ensemble average of the power spectrum would then be 

(28a)    <PU)> = f   f dt D(T) COS   UT 

72 

-T/2 

<X(t-|-) X(t+J)>dt 

(?%) 

00 

- J   dt D(T) B0(T) cos ü)T 

where 

(29)     B0(T) = <X(t+^) m-j)> 

Is the ensemble covarlance of X(t). 

The mean square of the spectral density can also be estimated 
Starting with Eq. (27b), we have for a single trace. 
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(30)      P2(a)) = 1     f 
1 r/2      i 

dr' dt 
■                          i J 

n 
df D(T) Dd') X(t-|-) 

-00 -00 T/2       -T/2 

X(t4^) XCt'- ^- ) XCt'* ^-) cos »T cos WT' 

Taking the ensemble average of both sides of Eq. (30) would give a 
fourfold average under the integral sign.   This can be evaluated 
assuming the data, (the X's) are normally distributed.   The result is 

(31)     <X(t+£) X(t4) X(t,+^-) X(t,-^-)> = BJt-f+4^) Bjt-t'-^) 

+ Bn(t-f+ I?-) BJt-t'- I?-) + BJT) BJT') 

Equations (30). and (31) are evaluated in the spectral domain.   The result, 
when combined with Eq. (28a), is 

(32)     <(P(ü))-<P(a))>)2> «^J   H2^) P2^) do), 

where H(ü»,a)]) is a   symmetrized transform of D(T).   Finally Eqs. (29) 
and (32) are evaluated assuming the P(a>) does not change appreciably 
over a spectral range 2ir/Tm.   The results, when inserted into Eq. (25), 
are 

,oo 2 
2 2TC 

(33)     k 2<PM= 
<(P(a))-<P(ü))>r>     2Tr 

; 

0 p(a))H((ü)dü):    2T 

CP(u)H(a)):2da)       ^m 

Equation (33) is the basic result. It says that the number of 
degrees of freedom as determined from the chi-square distribution and the 
desired precision is given by 2T/Tm. This is then interpreted, as before, 
as the number of statistically independent sections of data. 

As another approach we might indicate what one could also apply 
the chi-square distribution to finding the proper averaging time when 
dealing specifically with the variance of a normally distributed stationary 

15 
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PHASE STRUCTURE FUNCTION STUDIES 

expression for D (p) is 

(34)     Ds(o) = STT2 k2 | [1-J0(<M] j (7 cos^M^ )2 ^ (£-) dZ < dK 

where X = Z-n/k= light wavelength 
p = observation point separation , 
K = spatial frequency 
L = range ' 
Z ■ distance from transmitter along propagation path 

•N = refractive index spatial spectrum. 

'       : ■    ' ^16 

\ 1 

1 

/ 
1 

^ 
1 

1 

f 

1 ( 
1 

f         . 1 

1 i 

i 

I 
I 
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random variable.   For example, let a time trace be divided into sections 
each Jm long, so that they are essentially uncorrelated.   Then the mean 
variance formed from the variances of the individual traces should 
follow a cht-square distribution.   Thus, ope need merely use th^ chi-square 
tables in conjunction with the desired precision to determine' the 
requisite nuinber of degrees of freedom.   This then gives the number of T 

sections of length T_ in the total data run. j 

To summarize, the study of averaging times must concern the 
criterion for setting the averaging time, and the exact quantity 
measured.    Several examples appearing in the literature have been con- 
sidered associated with the approach of the time average value of the 
mean and the variance to the ensemble value and the precis-*on of the 
power spectrum and variance to the desired values. 

I 
f: 
0 
li 

In the examination of phase structure function various curves 
have been plotted to provide useful information for comparing results 
and for planning experiments.   There are two types of curves.   The 
first type shows spherical wave phase structure function as a function 
of separation for various ranges normalized to refractive index parameter, rj 
Cfc.   This data is intended for direct comparison with experimental results. 
Tne second type of curve shows the contribution to spherical wave phase 
structure function of various portions of the propagation pathj   These _ 
curves of relative contribution versus distance are clotte^ for various j 
separations, for various values of the parameter 2kL§/L where x = Z-n/k 
is the wavelength, L is the total range and L0 is the turbulence outer 
scale.   They are also normalized to Cfc.   Also included are various paths, 
including horizontal and slightly inclined paths with the beam propagation 
both upward and downward.   These curves are intended to be useful in the       , 
design and interpretation of future experiments and in the possible  1 
interpretation of present data. ' 

0 

1 The curves are based on expressions already in the literature     , ' , 
(Carlson, 1969) derived using the Pytov approximation.   The basic 
axoression for D (o^ is ' '        1 U 

li 
E 
B 
i 
1 
1 
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The Index spatial spectrum used is the Von Karman spectrum given in 
Eq. (35). 

2       -(KA/5.92)2 

0.033 C„(H) e     0 

(35a)   *N(.c) =-2-^ Vyr/c 
N (K   +l/Lj)T,/6 

(35b) = 0.033 cJ(H) (K2 + L^)"11/6 

■ i 

where z   ■ turbulence inner scale, H = height. 

The approximate form in Eq. (35b) was used because the phase structure 
function is not generally measured at the separations comparable with 
the inner scale, and the curves are for comparison with measured values. 
For the slant paths the structure parameter was taken to vary with height 
to the power (-4/3), (Wyngard et al, 1971) and the outer scale proportional 
to altitude. These are valid in the first 500 ft for unstable air and well 
developed turbulence. 

(36a) CjjdO " C2(H0)(H/H0)-
4/3 

(36b,) L0(H) « L0(H0)ß.) 
o 

(*c) f • 1 4 (V^) 
0 0 

where H   ■ transmitter height 

H.  * receiver height. 

Equation (36c) written with distance along the path as a parameter was 
the actual expression used. 

The calculations were performed on a digital computer using 
expressions derived from Eqs. (34) - (36).   To find the Incremental 
pathlength contributions to Ds(p) the order of integrations in Eq. (34) 
was reversed, the resultant inner Integral giving the desired Incremental 
path contributions.   The calculations were made using normalized 
ditnensionless parameters 

17 
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(37a)    u 5   LO(H0)K 

(37b) Z/L 

(37c)   y = 2k LJ (Ho)/L 

(37d)   Co = c2(Ho) k7/6L11/6 q(0)/0J3 

(Tatarski, 1961) giving to Eq. (34) the form 

(38a)    Ds(p/Lo) = {0.033 x 8ir2C0 x (|-)ö/6} x 

where 

(38b)   F(v) =     du(l-J0(^))\cos2|U ^^ 

dv F(v) 

il +v P 
-n/6 

X (i + V (- 
H.   - H. 

4) •4/3 

Of the reduced parameters, u Is a reduced spatial frequency, v Is 
reduced range, y Is the Fresnel number for an aperture the size of the 
outer scale, and C0 is proportional to the spherical wave log amplitude 
variance, often used as a scaling parameter. 

Figures 3a and 3b show the contribution to the normalized phase 
structure function for 8 separations (normalized) and for y ■ 10+3.   The 
normalized function, F(v) is insensitive to the parameter y and hence 
Fig. 3a covers all of the experimentally interesting range of y.   Fig. 
3b shows that y has a larger (but still small) effect on F(v) for the 
smaller separations (p/L0).   This means that the range dependence in 
F(v) is very nearly independent of wavelength, the values 10^ << y = < io5 

cover both 0.6y and 10y for ranges of interest. The wavelength dependence 
is in the y5/6 part of the normalization constant in front of the integrals. 
From Figs. 3a and 3b it is evident that the most important contributions 
to Ds are made near the receiver for a horizontal path. 
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Figures 4 and 5 show the normalized Ds integrand for an upward and 
downward slant path respectively.    In the upward path the curve amplitude 
has "saturated", so that a more nearly constant contribution to range 
results.    In the downward path the turbulence effects are strongly 
concentrated at the receiver. 

Having the functions in Figs. 3a and 3b it is a simple matter to 
calculate the complete phase structure function. 

The unnormalized phase structure function, for direct comparison 
with experimental results, is presented in Figs. 6a, 6b, and 6c for the   • 
three ranges of immediate interest. 

Having developed the programs to calculate range dependence of 
the phase structure function, it was also possible with only minor 
modifications to calculate the range dependence of the small aperture 
angle of arrival correlation functions. 

The small aperture elevation (Bj and the azimuth (Bg) angle of 
ion functions are related to the phase structure function arri v< 

by 
il correlation function; 

(39) B (P) = \ a      zvr 
32Ds(p) 

ap2 

(40) Bß(p) - -V 
3          2kZp 

3Ds(p) 

3p 

Equations 34, 39, and 40 may be used to find the contribution 
to Ba and Bg from various ranges, and (for simplicity) a horizontal 
path. 

1 
(41)      Bß(f-) = 47r2 x .033 cjj^) -^3 f G(v) dv 

0 00 

s(v,.f^ 4^(4<i-,»(H4)-^du 
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(«)     Bo(^ . ^ x .033 c*(„o) -^  } H(v) d 

H^ v)./j0(^^co.2(ü!{i-n) 
0     V y 'v 

x (i + ^-"/e 
du - G(v). 

Typical examples are shown in Figs. 7a and 7b. 

The numerical calculations were done with double precision 
(17 significant figures) arithmetic.   A 96 point Gaussian quadrature 
integration subroutine was used to do the inner integrations.   The 
numerical integration limits are such as to yield better than ].% accuracy. 
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BIBLIOGRAPHY OF OPTICAL PROPAGATION 
IN A TURBULENT ATMOSPHERE 

List 2 gives an alphabetical tabulation of the first authors in 
the complete bibliography and the years that they published. 

30 

I 
The final item is a continuation of the bibliography included 

in Ohio State University Report RF 2880-2, and includes journal articles ■ 
dealing with the effects of a turbulent atmosphere on electromagnetic | 
wave (generally light beam) propagation.   These articles are listed by 
year and then alphabetically by author.   One of the major features of 
this revised bibliography is the inclusion of Russian articles in Izv. I 
Vuz. Radio Fizika that have not been translated into the English edition • 
Soviet Radio Physics.    These original Russian articles have English titles 
and abstracts. I 

There was also some additional information on authors and journals 
compiled from the complete bibliography.   This information is presented , 
in two additional listings. j 

List 1 tabulates the journals surveyed, the years and the number 
of entries found for the complete bibliography. I 
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1967 

BOURKOV V 6  YASHIN YU   IZV VUZ RADIOFIZ  10  1631-1638  1967 
TO THE THEORY Of  ELECTROMAGNETIC WAVE REFRACTION IN TWO-DIMENSIONAL 
INHOMOGENEOUS ISOTROPIt MEDIUM 

P ACHEVA M E "  RADIOPHYS  10  «2<*  1967  (10  775  1967) 
INVESTIGATION OF THE STATISTICAL PROPERTIES OF «-.TRONG FLUCTUATIONS IN THE 
INTENSITY OF LIGHT PROPAGATf.o THROUGH THE ATMOSPHERE NEAR ^HE EARTH 

KAZANTSEV A N  LUKIN Ü       RAO ENG AND ELEf  12  1891-1910  1967 
STUDY OF IONOSPHERE RADIOWAVE PROPAGATION 

KOMISSAROV V M RADIOPHYS  JO  ?7ü  1967  (10  1*98  1967) 
FIELD OF A POINT SOURCE IN A RANDOMLY NOWUNlFORM STRATIFIEU MEDIUM 

STREZH P E WAD ENG AND LLEC  1?  1370-1377  19C>7 
PLANE WAVES INCIDENT ON THE DIVISION BOUNDRY (VACUUM-INHOMOGENEOUS 
ISOTROPIC MEDIUM) 

TATARSKI V I IZV VUZ RADIOFIZ  10  1762-1765  1967 
ESTIMATION OF LIGHT DEPOLARIZATION BY TURBUlEf'T ATMOSPHERIC INHOMOGLMETIES 

VVEDENSKIY B .   ET AL   RAD ENG ANfi ELEC  1?  lP67-ia90  1967 
STUDY OF METERi DECIMETERi CENTIMETER, AND SUF.MJLLIMETER RADIOWAVL 
PROPAGATION 

1968 

ARSAEV I E  KIMBER B E   IZV VUZ RADIOFIZ  11  1377-1387  1968 
ON GEOMETRIC-OPTICS APPROACH IN CONSIDLRATION OF WAVE PROPAGATION 
IN INHOMOGENEOUS ABSORBING MEDIA 

BAKHAREVA M F RAD ENG AND ELEC  13  983-9f\8  1966 
FREQUENCY SPACE CORRELATION OF THE FIELD FLUCTUATIONS» AMPLITUDE AND 
INTENSITY IN A MEDIUM WITH RANDOI» INMOilOGENEI TIES 

BAKHAREVA M F RAD ENG AND ELEC  13 HHS-H**     1966 
FREQUENCY SPACE CORRELATION OF AMPLITUüE ANO PHASE FLUCTUATIONS IN A 
MEDIUM WITH FORTUITOUS HETEROGEMEITIES 

DEMYANENKO L N   ET AL   IZV VUZ RADIOFIZ  11  20n-20t  1968 
SCINTILLATION OF DISCRETE SOURCES IN TROPOSPHERE 

OOLIN L S IZV VUZ RADIOFIZ  11  8«»0-ß'*9  1968 
EQUATIONS FOR CORRELATION FUNCTIONS OF A WAVE DEAM IN A RANDOMLY- 
INHOMOGENEOUS MEDIUM 

6URV1CH AS      ET AL   IZV VUZ RADIOFIZ  11  6t-71  1968 
EXPERIMENTAL INVESTIGATIONS OF FLUCTUATIONS OF ARRIVAL ANGLE OF LIGHT 
UNDER THE CONDITIONS OF STRONG FLUCTUATIONS OF INTENSITY 

GURVICH AS      ET AL   IZV VUZ RADIOFIZ  11  1360-1370  1968 
FLUCTUATIONS OF THE PARAMETERS OF A LASER LIGHT WAVE PROPAGATING IN 
THE ATMOSPHERE 

IZ^'^OV A 0 RAO ENG AND ELEC  13  1155-1160  1968 
FLUCTUATIONS OF THE AMPLITUDE AMD PHASE OF PLANE MONOCHROMATIC WAVE OF 
SUBMILLIMETER WAVE AT PROPAGATION IN NEAR EARTH MEDIUM OF 1URBULENT 
ATMOSPHERE WITH DUE REGARD FOR THE ARSORPTION IN WATER VAPOR 

SHABELNIKOV A V RAD ENG AND ELEC  13  ?llf)-2l21  1968 
ELECTROMAGNETIC WAVE REFRACTION IN THE EARTH ATMOSPHERE WITH LAMINATED 
HETEROGENEITIES 

SHISHOV V I IZV VUZ RADIOFIZ  11  666-875  1968 
THE THEORY OF WAVE PROPAGATION IN RANDOM MEDIA 

ZAITSEV YU A     ET AL   IZV VUZ RADIOFIZ  ll  lfl02-18U  1968 
ON THE USE OF GEOMETRICAL OPTICS APPROXIMATION IN ELECTRODYNAMICS OF 
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INHOHOGEK.OUS ANISOTROPIC MEOIA 

19fi9 

ARTEMYrV A V 
COHERENCF OISTORTIOW 

BARA8ANEMK0V YU N 
CORRELATION PUNCTION 

BUNKIN F V       ET AL 
RANDOM SPATIAL OUTBREAKS OF 
TURBULENT MEüIUM 

6RACHEVA ME     ET AL   1ZV VU2 RAOIOFI? 
THE AVERAGING EFFECT OF THE RECEIVING 
FLUCTUATIONS 

IZMUMOV A 0 RAD ENG AMD ELEC 

RAO ENG AND £LEC 
BY ATMOSPHERE 
IZV VUZ RAOIOFI? 
OF A RANDOM FIFI.O 
IZV VUZ RAOIOFIZ 

INTENSITY 

1H  5«» -5*6  1969 

12  fl9**-699  1969 
OF GREAT OPTICAL DEPTH 
12  875-881  1969 

IN PROPAGATING A IxAVE THROUGH 

12  235-255  1969 
APERTURE ON LIGHT INTENSITY 

l«l  1312-131«* 

THE 

12 175-180 3969 
IN  A   TURBULENT  ATMOSPHERE 

12 686-693 1969 
SOURCE   AND  A  RECEIVER  ON  LIGHT 

12  67«»-6fi5  1969 

1969 
CORRELATION OF FLUCTUATIONS OF AMPLITUOE AND PHASE OF PLANE MOWOCI-IROMATIC 
WAVE OF SUBMILLIMETER BAND AT PROPAGATlOM IN TURBULENT ATMOSPHERE NEAR THE 

EARTH LAYER 
KLYATSKIN V I IZV VUZ RAOIOFIZ  12  723-726  1969 

ON DISPERSION OF THE ANGLE OF ARRIVAL OF A PLANE LIGHT WAVE PROPAGATING 
IN A MEDIUM WITH RANDOM WEAK INHOMOGFMEITIES 

KLYATSKIN V I IZV VUZ RAOIOFIZ  1?  1506-1511  1969 
FUNCTIONAL DESCRIPTION OF THE CHARACTERISTICS OF A PLANE LIGHT WAVE PROPA- 
GATING IN A MEDIUM WITH RANDOM INHOMOKtNClTTES OF THE REFRACTIVE INDEX 

KLYATSKIN V I JFTP  30  520-523  197n (57  959-965  19o9> 
APPLICABILITY OF A MARKOV RANDOM PROCESS IN FPORLEMS RELATING TO 
PROPAGATION OF LIGHT IN A MEDIUM WITH RANDOM INHOMOGENEITIES 

KON A I  TATARSK1 VI    IZV VUZ RA0TÜFI7 
CORRELATION OF BEAM TRANSVERSE SHIFTS 

KON A I IZV VUZ RAOIOFIZ 
THE EFFECTS OF FINITE DIMENSIONS OF A 
INTENSITY FLUCTUATIONS 

KRAVTSOV YU A    ET AL   IZV VUZ RAOIOFIZ 
COMPLEX GEOMETRICAL OPTICS OF INHOMOGEwEOUS AUISOTROPIC MEDIA 

KRAVTSOV YU A    ET AL   IZV VUZ RAOIOFIZ  12  1175-1180  1969 
APPLICATION OF THE PERTUPBATIOM THEORY TO THE EIKONAL EÖUATION IM THE 
CASE OF INHOMOGENEOUS ANISOTROPIC MEDIA 

KRAVTSOV Y A     ET AL   JFTP  30  935-937  1970  (57  1730-I7ä«f 1969) 
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SUMMARY 

In this interim report three areas of interst have been considered; 
averaging times for random data, phase structure functioi data and a 
continuation of a bibliography.    The averaging time study reviewed 
approaches contained in the literature showing that the averaging time 
depends on the quantity of interest and on the particular criterion.    The 
phase structure function computations gave curves intended to be useful 
in experiment design ard data interpretation.   The bibliography presented 
a listing of recent journal articles and author and journal lists. 
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